Sains Malaysiana 53(1)(2024): 231-238
http://doi.org/10.17576/jsm-2024-5301-18
Properties for Certain
Class of p-
Valent Functions Related to
Jackson’s Operator
(Sifat bagi Kelas Fungsi Tertentu Valen p-
yang Berkaitan dengan Pengoperasi Jackson)
MA’MOUN I.Y. ALHARAYZEH1,*,
MASLINA DARUS2, FAISAL Y. ALZYOUD3 & HABIS S.
AL-ZBOON4
1Department of
Scientific Basic Sciences, Faculty of Engineering Technology, Al-Balqa Applied
University, Amman 11134, Jordan
2Department
of Mathematical Sciences, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Department
of Computer Science, Faculty of Information Technology, Isra University, Amman
1162, Jordan
4Department of
Education and Cultural Studies, College of Arts and Sciences, University of
Nizwa, Oman
Received:
14 August 2023/Accepted: 2 January 2024
Abstract
An inspiration from the fundamentals of (r,q)
calculus to introduce an innovative subclass within the T(p) category of
multivalent analytic functions, located within the confines of the open unit
disk, is subjected to examination. The establishment of the subclass was
achieved by employing Jackson's derivative operator to enhance the comprehension
of these analytical functions. This article
began by investigating and establishing adequate criteria that dictate the
inclusion of functions within this recently introduced subclass. To achieve
this, a comprehensive coefficient characterization to facilitate a deeper
comprehension of the subclass's properties and behavior is derived. Further,
various pertinent results that contribute to the broader understanding of the
functions belonging to this subclass are explored. The findings and
implications of these results are elucidated, underscoring the potential
significance of this work in advancing the field of multivalent analytic
functions and their applications. In conclusion, this paper broadens the scope
of T(p) and sheds light on the distinct characteristics exhibited by the
functions in this newly introduced subclass. This work sets the stage for
further exploration and applications of (r,q) calculus and Jackson's derivative operator in the domain of multivalent
analytic functions.
Keywords:
p- valent
function; quantum or (r,q)
-calculus; (r,q)
-derivative
operator
Abstrak
Inspirasi daripada konsep asas kalkulus- (r,q) dengan memperkenalkan satu subkelas yang inovatif dalam kategori fungsi
analisis multivalen T(p) tertakrif pada cakera unit terbuka akan dikaji.
Pembinaan subkelas tercapai dengan menggunakan pengoperasi terbitan Jackson
bagi meningkatkan kefahaman berkenaan fungsi analisis ini. Makalah ini
dimulakan dengan mengkaji dan membina kriteria yang cukup bagi menyatakan
rangkuman fungsi agar terkandung dalam subkelas yang diperkenalkan. Bagi
mencapai hasrat tersebut, satu ciri pekali yang komprehensif diperoleh bagi
memudahkan lagi kefahaman terhadap sifat dan kelakuan subkelas tersebut. Malah
beberapa hasil penting yang menyumbang kepada kefahaman luas bagi subkelas
fungsi ini dikaji. Keputusan dan implikasi
hasil ini diperjelaskan dan menekankan potensi kepentingan kajian dalam
memajukan bidang fungsi analisis multivalen dan penggunaannya. Kesimpulannya,
makalah ini memperluaskan skop T(p) dan memberi pencerahan kepada ciri
berbeza yang ditunjukkan oleh fungsi dalam subkelas baharu yang diperkenalkan.
Kajian ini menyediakan ruang kepada penerokaan lanjutan dan penggunaan
kalkulus- (r,q) dan pengoperasi terbitan Jackson dalam domain
fungsi analisis multivalen.
Kata kunci: Fungsi valen
-p
;
kuantum atau kalkulus- (r,q)
;
pengoperasi terbitan -(r,q)
REFERENCES
Alharayzeh,
M.I. 2021. On a subclass of k-uniformly analytic and multivalent
functions defined by q-calculus operator. Far East Journal of
Mathematical Sciences 132(1): 1-20.
Alharayzeh, M.I. & Alzboon, H.S. 2023. On a subclass of k-uniformly analytic functions with
negative coefficients and their properties. Nonlinear Functional Analysis
and Applications 28(2): 589-599.
Alharayzeh, M.I. & Ghanim, F. 2022. New subclass of k-uniformly univalent analytic
functions with negative coefficients defined by multiplier transformation. Abstract
and Applied Analysis 2022: Article ID. 4593799.
Alharayzeh, M. & Darus, M. 2010. On subclass of analytic univalent functions associated with
negative coefficients. International Journal
of Mathematics and Mathematical 2010: Article ID. 343580.
Aqlan, E., Jahangiri,
J.M. & Kulkarni, S.R. 2004. New classes of $ k $-uniformly convex and starlike functions. Tamkang
Journal of Mathematics 35(3): 261-266.
Chakrabarti, R. &
Jagannathan, R. 1991. A (p, q)-oscillator realization of two-parameter quantum
algebras. Journal of Physics A: Mathematical and General 24(13):
L711-L718.
Dixit, K.K. & Pal, S.K. 1995. On a
class of univalent functions related to complex order. Indian Journal of Pure and Applied Mathematics 26(9): 889-896.
Harayzeh, M. & Darus, M.
2011. The Fekete-Szegö theorem for a certain class of analytic functions. Sains
Malaysiana 40(4): 385-389.
Ismail, M.E.H., Merkes, E.
& Steyr, D. 1990. A generalization of starlike functions. Complex
Variables, Theory and Application: An International Journal 14(1-4):
77-84.
Jackson, F.H. 1910. On a q-definite
integrals. The Quarterly
Journal of Pure and Applied Mathematics 41: 193-203.
Jackson,
F.H. 1909. On q-functions and a certain difference operator. Earth and Environmental Science Transactions of the
Royal Society of Edinburgh 46(2): 253-281.
Kanas, S. & Răducanu, D. 2014. Some subclass of
analytic functions related to conic domains. Mathematica Slovaca 64(5):
1183-1196.
Kunt,
M., Iscan, I., Alp, N. & Sarikaya,
M. 2018. (p, q)-Hermite-Hadamard inequalities and (p, q)-
estimates for midpoint type inequalities via convex and quasi-convex functions. Revista De La Real Academia De Ciencias Exactas
Fisicas Y Naturales Serie A-Matematicas 112(4): 969-992.
Prabseang, J., Nonlaopon, K.
& Tariboon, J. 2019. (p, q)-Hermite–Hadamard inequalities for double
integral and (p, q)-differentiable convex functions. Axioms 8(2):
68.
Sadjang, P.N. 2018. On the
fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results
in Mathematics 73: 39.
Silverman, H. 1975. Univalent
functions with negative coefficients. Proceedings of the American
Mathematical Society 51(1): 109-116.
Tunç, M. & Göv, E. 2021.
Some integral inequalities via (p, q)-calculus on finite intervals. Filomat 35(5):
1421-1430.
*Corresponding author; email: mamoun@bau.edu.jo
|